## C.U.SHAH UNIVERSITY Summer Examination-2017

#### **Subject Name : Introduction to Quantum Mechanics**

| Subject Code : 4SC06QMC1 | <b>Branch: B.Sc. (Physics)</b> |
|--------------------------|--------------------------------|
|                          |                                |

Semester : 6 Date :11/04/2017 Time : 02:30 To 05:30 Marks : 70

### Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

| Q-1 |            | Attempt the following questions:                                                                                                                             | (14) |
|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | a)         | Define the 'Matter Waves' represented by the wave function in quantum mechanics.                                                                             | (01) |
|     | b)         | What is D'Broglie's hypothesis?                                                                                                                              | (01) |
|     | c)         | Write formulas for<br>(1) Energy $\mathbf{E} = \dots$ according to Plank's theory, and<br>(2) Momentum $\mathbf{P} = \dots$ according to D' Brogly's theory. | (01) |
|     | d)         | Define 'Wave Packet' in quantum mechanics.                                                                                                                   | (01) |
|     | e)         | Define Hamiltonian operator H. Write its formula.                                                                                                            | (01) |
|     | f)         | What do you mean by * in the formula $ \Psi ^2 = \Psi \Psi^*$ . Name $\Psi *$ in $ \Psi ^2 = \Psi \Psi^*$                                                    | (01) |
|     | g)         | Name the process used for normalization of "a (non-normalized) wave function with infinite norm"?                                                            | (01) |
|     | h)         | Write the time independent Schrödinger equation.                                                                                                             | (01) |
|     | i)         | Define : Stationary states.                                                                                                                                  | (01) |
|     | <b>j</b> ) | Write Schrödinger Equation for the system of <i>n</i> particles.                                                                                             | (01) |
|     | k)         | Define : Dirac delta function.                                                                                                                               | (01) |
|     | l)         | Define : Self Adjoint Operator.                                                                                                                              | (01) |
|     | m)         | Define : 'Conversation of Probability' in terms of Quantum Mechanics.                                                                                        | (01) |
|     | n)         | For a self adjoint operator, what is implied by conditions :<br>$\langle A \rangle = \langle A^* \rangle$ and $a = a^*$                                      | (01) |



|     | A<br>B | dimensional ger<br>Obtain Ehrenfe<br>(1) Expectation<br>(2) Expectation                                                                                                                      | nger Equation for free particle in one dimension; Obtain three meralized form of Schrödinger Equation.<br>est Theorem by deriving necessary formulas for value of moment and also<br>Value in terms of Newton's second law of motion that proves value of moment is $m \cdot \frac{d < x>}{dt} = < P_x >$ | (07)<br>(07)          |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Q-3 |        | Attempt all que                                                                                                                                                                              | estions                                                                                                                                                                                                                                                                                                   | (14)                  |
|     | A      | Give statements                                                                                                                                                                              | s of the fundamental postulates of wave mechanics. Prove any one.                                                                                                                                                                                                                                         | (07)                  |
|     | В      | Define : Adjoint of an operator.<br>Derive the following properties of <i>Adjoint Operators</i> .<br>(i) $(A + B)^+ = A^+ + B^+$                                                             |                                                                                                                                                                                                                                                                                                           |                       |
|     |        | ( <b>ii</b> ) ( <i>A</i> . <i>B</i>                                                                                                                                                          | $(B^{+})^{+} = B^{+} A^{+}$                                                                                                                                                                                                                                                                               |                       |
|     |        | (iii) C. A                                                                                                                                                                                   | $A^+ = C^* A^+$                                                                                                                                                                                                                                                                                           |                       |
|     |        | $(iv)$ $(A^{\dagger})^+$                                                                                                                                                                     | = A                                                                                                                                                                                                                                                                                                       |                       |
| 0.4 |        |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | (14)                  |
| Q-4 |        | Attempt all que                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | ( <b>14</b> )<br>(07) |
|     | A      | prove that the uncertainty product of x and $P_x$ is minimum as the probability of                                                                                                           |                                                                                                                                                                                                                                                                                                           |                       |
|     | В      | finding the particle is maximum.<br>Discuss the Schrödinger equation and energy Eigen values in terms of the 'simple harmonic oscillator'.                                                   |                                                                                                                                                                                                                                                                                                           |                       |
| Q-5 |        | Attempt all que                                                                                                                                                                              | estions                                                                                                                                                                                                                                                                                                   | (14)                  |
|     | A      | Obtain the Norr<br>( i)                                                                                                                                                                      | nalized Wave Function of the following each.<br>$\Psi = a. exp i(kx - wt)$ where $-1 \le x \le 1$                                                                                                                                                                                                         | (08)                  |
|     |        | ( ii)                                                                                                                                                                                        | $\chi = exp(-i\theta)$ where $0 < \theta < 2\pi$                                                                                                                                                                                                                                                          |                       |
|     |        | (iii)                                                                                                                                                                                        | $\Psi'(\phi) = A\sin(mn\phi)$ where $0 < \phi < 2\pi$                                                                                                                                                                                                                                                     |                       |
|     |        | ( <b>iv</b> )                                                                                                                                                                                | $\phi = A \sin \phi \qquad \text{where}  0 < \phi < \pi$                                                                                                                                                                                                                                                  |                       |
|     | В      |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                       |
|     | С      | the box normalization method. Where $-L \le x \le L$ .<br>Show that the commutator of the position and momentum do not vanishes for a particle; as $[x, P_x] = [y, P_y] = [z, P_z] = i\hbar$ |                                                                                                                                                                                                                                                                                                           |                       |
|     |        |                                                                                                                                                                                              | Page 2 o                                                                                                                                                                                                                                                                                                  | f <b>3</b>            |

Attempt any Four questions from question No.-2 to question No.-8 Attempt all questions

# Q-2

(14)

#### Attempt all questions Q-6

| Q-6 |   | Attempt all questions                                                                                                                                                                                          | (14) |  |
|-----|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|     | Α | Find the Eigen values of the following Eigen functions for operator $A = d^2/dx^2$<br>(i) $\Psi(x) = sin 2x$ (iii) $\phi(x) = e^{(nx)}$<br>(ii) $\chi(x) = cos x$ (iv) $\Phi(x) = sin^2 x$                     | (08) |  |
|     | В | Prove the following :<br>(i) $[P_x, x] = [P_y, y] = [P_z, z] = -i\hbar$<br>(ii) $[y, P_x] = [z, P_y] = [x, P_z] = 0$                                                                                           | (06) |  |
| Q-7 |   | Attempt all questions                                                                                                                                                                                          | (14) |  |
|     | Α | Prove that :<br>(i) $[x, P_x^n] = n i \hbar P_x^{n-1}$                                                                                                                                                         | (03) |  |
|     |   | (ii) $\begin{bmatrix} y, P_y^n \end{bmatrix} = n i \hbar P_y^{n-1}$                                                                                                                                            |      |  |
|     | В | (iii) $[z, P_z^n] = n i \hbar P_z^{n-1}$<br>For angular momentum prove that:<br>(i) $[L_x, L_y] = n i \hbar L_z$                                                                                               | (04) |  |
|     |   | (ii) $\begin{bmatrix} L_y, L_z \end{bmatrix} = n i \hbar L_x$                                                                                                                                                  |      |  |
|     |   | (iii) $[L_z, L_x] = n i \hbar L_y$                                                                                                                                                                             |      |  |
|     | С | Angular momentum of a particle with position vector $\vec{r}$ and linear momentum $\vec{p}$ is $\vec{r} \times \vec{p}$ . Obtain the operators for components $L_x$ , $L_y$ and $L_z$ of the angular momentum. |      |  |
|     | D | For given wave function $\Psi = \sqrt{\frac{2}{L}} \cdot sin\left(\frac{n\pi x}{L}\right)$ ,                                                                                                                   | (03) |  |
|     |   | calculate the Expectation Value of x for a particle in a box having the volume $L^3$                                                                                                                           |      |  |
| Q-8 |   | Attempt all questions                                                                                                                                                                                          | (14) |  |
|     | A | Prove that (A <sup>+</sup> A) is a self adjoint.                                                                                                                                                               | (02) |  |
|     | В | If A & B are self adjoint and commute each other than prove that AB is also self                                                                                                                               | (03) |  |
|     | С | adjoint.<br>Obtain [p, $f(x)$ ] where $f(x)$ is some function of operator x.                                                                                                                                   | (03) |  |
|     | D | Given that $x = i\hbar \frac{\partial}{\partial p}$ , obtain [x, $f(p)$ ]                                                                                                                                      |      |  |
|     | Ε | The wave function of a particle is $(1/\sqrt{\pi})^{-1/2} e^{-x^2}$ .<br>Find the expectation value of its linear momentum.                                                                                    | (03) |  |

